heredity

Heredity is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

https://en.wikipedia.org/wiki/Heredity

Identical twins have exactly the same DNA, but they are not exactly alike. Each twin has his or her own personality, talents, likes, and dislikes. There are even diseases that appear in one twin but not the other, including arthritis, diabetes, autism, schizophrenia, cancer, and many others. The differences between identical twins don’t come from DNA—they all come from external factors.

Scientists often study twins to understand how genes and the environment work together to affect traits. They compare traits in identical twins, who have identical DNA, and fraternal twins, who share half their DNA, just like any siblings. If a characteristic appears more frequently in identical twin pairs than in fraternal twin pairs, then it has an inherited component.

n humans, eye color is an example of an inherited characteristic: an individual might inherit the “brown-eye trait” from one of the parents.[1]Inherited traits are controlled by genes and the complete set of genes within an organism’s genome is called its genotype.[2]

The complete set of observable traits of the structure and behavior of an organism is called its phenotype. These traits arise from the interaction of its genotype with the environment.[3]

  1. All evolutionary phenomena can be explained in a way consistent with known genetic mechanisms and the observational evidence of naturalists.
  2. Evolution is gradual: small genetic changes, recombination ordered by natural selection. Discontinuities amongst species (or other taxa) are explained as originating gradually through geographical separation and extinction (not saltation).
  3. Selection is overwhelmingly the main mechanism of change; even slight advantages are important when continued. The object of selection is the phenotype in its surrounding environment. The role of genetic drift is equivocal; though strongly supported initially by Dobzhansky, it was downgraded later as results from ecological genetics were obtained.
  4. The primacy of population thinking: the genetic diversity carried in natural populations is a key factor in evolution. The strength of natural selection in the wild was greater than expected; the effect of ecological factors such as niche occupation and the significance of barriers to gene flow are all important.

1.Dimpe

 

Related image

 

a small depression in the flesh, either one that exists permanently or one that forms in the cheeks when one smiles

 

2tongue roll

This article is about human tongue rolling. For tongue rolling in cattle, see Vacuum activity. For the movement disorder, see Tardive dyskinesia.

3.curly hair

Image result for curly hair

Curly hair is a bit more delicate than straight hair, and the tighter the curl or coil, the more fragile the strand.

 

 

 

 

 

 

 

 

 

Leave a Reply